Flavor Changing Neutral Currents and Rare Top Decays

Nathaniel Odell

Norhtwestern University

April 4, 2013

Outline

- 1 Introduction
- 2 Rare top decays
 - Event selection
 - lacksquare Determination of ${\cal R}$
 - Results
- 3 FCNC
 - $t \rightarrow qZ$
 - $t \rightarrow qH$
- 4 Summary

Introduction

New physics with the top quark

- large mass ⇒ radiative corrections more important than for lighter fermions
- high productions cross-section at LHC @ 14 TeV,
 - $\sigma_{t\bar{t}} \sim \mathcal{O}(800pb)$
 - $\sigma_t \sim \mathcal{O}(300pb)$ (dominated by t-channel)

Rare top decays

$$V_{CKM} = \begin{bmatrix} 0.97428 & 0.2253 & 0.00347 \\ 0.2252 & 0.97345 & 0.0410 \\ 0.00862 & 0.0403 & 0.999152 \end{bmatrix}. \tag{1}$$

- top quarks decay overwhelmingly to W+b in SM
- little mixing between d and s quarks as observed in CKM heirarchal structure

Measuring V_{ts} and V_{td} is difficult, so instead we measure R,

$$\mathcal{R} = \frac{Br(t \to Wb)}{Br(t \to Wq)} \tag{2}$$

Results from the LHC

Measurements of \mathcal{R} have been done by CMS* at both $\sqrt{s}=7$ (8) TeV using $L_{int}=2.2$ (16.8) fb⁻¹.

Event selection

- Select on $t\bar{t}$ events
 - lacksquare 2 prompt isolated leptons with $p_{T,\ell} >$ 20 GeV and $|\eta| <$ 2.4
 - MET > 40 GeV
 - $N_{iets} > 2$; jet $p_T > 30$ GeV and $|\eta| < 2.4$
 - $\Delta R(\ell, jet) > 0.3$
- kill dominant Z + X background by requiring $|M_{\parallel} M_{Z}| > 15$ GeV

Data is divided into three lepton flavor categories (ee, $e\mu$, and $\mu\mu$) and by the number of jets seen in the event.

* CMS PAS TOP-11-029, CMS PAS TOP-12-035

Event yields

ee	еµ	$\mu\mu$
$284 \pm 11 \pm 16$	$1134 \pm 22 \pm 64$	$438\pm14\pm24$
$165 \pm 3 \pm 9$	$650 \pm 6 \pm 39$	$262\pm4\pm16$
$18\pm3\pm18$	$47\pm 6\pm 47$	$4\pm2\pm4$
$1827\pm61\pm226$	$998\pm32\pm110$	$2757\pm69\pm188$
$9\pm2\pm2$	$58\pm 6\pm 6$	$21\pm3\pm3$
$24\pm1\pm1$	$79\pm1\pm4$	$37\pm1\pm2$
$5080\pm13\pm407$	$21040 \pm 30 \pm 1528$	$8130 \pm 17 \pm 565$
$7407 \pm 64 \pm 467$	$24006 \pm 50 \pm 1534$	$11649 \pm 73 \pm 597$
7254	24021	11423
	$284 \pm 11 \pm 16$ $165 \pm 3 \pm 9$ $18 \pm 3 \pm 18$ $1827 \pm 61 \pm 226$ $9 \pm 2 \pm 2$ $24 \pm 1 \pm 1$ $5080 \pm 13 \pm 407$ $7407 \pm 64 \pm 467$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Event purity

As an input for the determination of $\ensuremath{\mathcal{R}}$ is the purity of the event,

$$f_{t\bar{t}} = \mu \frac{N_{t\bar{t}, exp}}{obs} \tag{3}$$

and k_{st} which is the relative contribution from single top events.

Contribution	Channel	ee	еµ	μμ
	2 jets	0.647 ± 0.056	0.861 ± 0.052	0.666 ± 0.047
$f_{\rm t\bar{t}}$	3 jets	0.739 ± 0.069	0.913 ± 0.066	0.755 ± 0.065
• • •	4 jets	0.775 ± 0.091	0.938 ± 0.092	0.771 ± 0.087
	2 jets	0.065 ± 0.007	0.062 ± 0.005	0.062 ± 0.006
$k_{\rm st}$	3 jets	0.047 ± 0.004	0.043 ± 0.009	0.039 ± 0.006
	4 jets	0.040 ± 0.009	0.031 ± 0.006	0.047 ± 0.010

Jet misassignment and heavy flavor content

Important parameters

- b-tagging efficiency, ϵ_b
- \blacksquare jet misidentification rate, α_k
- heavy flavor content
- Data-MC corrections. fcorr

Invariant Mass [GeV]

Measurement of \mathcal{R}

The value of \mathcal{R} is extracted from the data using a binned likelihood fit,

$$\mathcal{L}(\mathcal{R}, f_{t\bar{t}}, k_{st}, f_{correct}, \varepsilon_b, \varepsilon_q, \varepsilon_{q*}, \theta_i) = \prod_{\ell\ell} \prod_{\mathsf{jets} > 2} \prod_{k=0}^{\mathsf{jets}} \mathcal{P}\left[N_{\mathsf{ev}}^{\ell\ell, \mathsf{jets}}(k), \hat{N}_{\mathsf{ev}}^{\ell\ell, \mathsf{jets}}(k)\right] \times \prod_{i} \mathcal{G}_{\mathsf{aus}}(\theta_i^0, \theta_i, 1)$$
(4)

The parameters of the fit are taken from values obtained above, and nuisance parameters are assumed to be unbiased and normally distributed. the value of

 \mathcal{R} the can be determined by forming a profile likelihood ratio,

$$\lambda(\mathcal{R}) = \frac{\mathcal{L}(\mathcal{R}, \hat{\theta})}{\mathcal{L}(\hat{\mathcal{R}}, \hat{\theta})} \tag{5}$$

Results

The value of ${\cal R}$ is interpreted under two assumptions...

Assume CKM unitarity ($\mathcal{R} \leq 1$) $$\mathcal{R}>0.945$$ $|V_{tb}|>0.972$

No constraint on
$$\mathcal{R}$$

$$\mathcal{R} = 1.023^{+0.036}_{-0.034}$$

$$|\textit{V}_{tb}| = 1.011^{+0.018}_{-0.017}$$

Summary

14 TeV Projection

Systematic uncertainty "saturates" with addition of more 8 TeV data. No obvious strategy for reducing uncertainties to <1% level required by theorists. No preliminary numbers at the moment.

Flavor Changing Neutral Currents

GIM mechanism

In the SM, tree-level FCNC decays are suppressed due to the GIM mechanism and limited mixing between generations.

⇒ Observation of FCNC decays may give us hints into new physics.

Standard Model FCNC

Decay	SM	Quark singlet	MSSM	\mathcal{R} SUSY	2HDM
t o qZ	10^{-14}	10^{-4}	10^{-6}	10^{-5}	10^{-7}
$t o q \gamma$	10^{-14}	10^{-8}	10^{-6}	10^{-6}	10^{-6}
t o qg	10^{-12}	10^{-7}	10^{-4}	10^{-4}	10^{-4}
t o qH	10^{-15}	10^{-5}	10^{-5}	10^{-6}	10^{-3}

Search channels

In this talk

$$t o qZ$$
 Investigate $t\bar{t}$ events with one t decaying as usual $(t o Wb)$ and the other through $t o qZ$ $t o qH$ Similar to $t o qZ$, but with many different final state options. Multilepton (≥ 3) final states, same-sign dilepton, or single lepton plus ≥ 3 b-jets are all possible search channels.

Not in this talk

$$t o qg$$
 Investigate single top + jet events.
 $\text{Br}(t o c(u)g) < 2.7 \times 10^{-4} (5.7 \times 10^{-5})$
 $(\text{arXiv:}1203.0529)$
 $t o q\gamma$ Investigate single top + γ events.

t o qZ

ATLAS, CMS, and D0 have all carried out investigations of $t \to qZ$ with similar analysis strategies. Consider the CMS analysis...

Event selection

Preselection

- 3 prompt, well-isolated leptons
- **■** £ > 30 GeV
- \blacksquare at least 2 jets ($p_T > 30 \text{ GeV}$)
- 2 leptons form Z candidate

Additional cuts

- require b-tagged jet or cut on HT_s^*
- Z+jet reconstructs top
- W+b-jet reconstructs top

*
$$HT_s = \sum p_T^{\ell} + \sum p_T^{jets} + \mathcal{L}$$

Preselection

Channel	µµе	μμμ	eee	ееµ
Drell-Yan	$2.0 \pm 1.4 \pm 0.3$	$0.9 \pm 1.0 \pm 0.1$	$2.8\pm1.7\pm0.4$	$0.9 \pm 1.0 \pm 0.1$
WZ	$46.1 \pm 6.8 \pm 6.1$	$60.3 \pm 7.8 \pm 8.0$	$40.9 \pm 6.4 \pm 5.4$	$48.6 \pm 7.0 \pm 6.4$
ZZ	$17.7 \pm 4.2 \pm 2.3$	$21.7 \pm 4.7 \pm 2.9$	$15.1 \pm 3.9 \pm 2.0$	$18.2 \pm 4.3 \pm 2.4$
WW	≤ 0.001	≤ 0.001	$0.2\pm0.3\pm0.0$	≤ 0.001
$t\bar{t}$	≤ 0.001	$0.5\pm0.7\pm0.1$	$0.9\pm0.9\pm0.1$	$0.9 \pm 0.9 \pm 0.1$
Single-top	≤ 0.001	$0.1\pm0.4\pm0.0$	$0.0\pm0.2\pm0.0$	≤ 0.05
Total	$66 \pm 8 \pm 7$	$84 \pm 9 \pm 9$	$60 \pm 8 \pm 6$	$69 \pm 8 \pm 7$
Data	73	87	85	61

Dominant background after preselection is diboson

b-tag selection

- require exactly one b-tagged jet
- tight requirements on both M_{Zj} and M_{Wh}

HT_s selection

- require $HT_s > 200$ GeV
- loose requirements on both M_{Zj} and M_{Wb}

Results and projections

Signal Selection	HT_S -cut Based	b-tag Based
Total background prediction (data driven)	$16.2\pm 3.9\pm 2.6$	$0.6 \pm 0.1 \pm 0.1$
Data	11	0
Expected limit at the 95% CL	$Br(t \rightarrow Zq) < 0.42\%$	$Br(t \rightarrow Zq) < 0.34\%$
Observed limit at the 95% CL	$Br(t \rightarrow Zq) < 0.39\%$	$Br(t \rightarrow Zq) < 0.34\%$

CMS limits

Limits are set using modified frequentist approach and are based on 4.6 fb⁻¹ of data taken at $\sqrt{s} = 7$ TeV.,

- No excess observed over SM prediction for both event selection strategies
- Expected bounds on limits are 0.30% 0.64% (0.34% 0.48%)for HT_s (b-tag) selection.

Assuming similar systematics and S/B, we can project to an upper limit of 0.01% with 300 fb $^{-1}$ at 14 TeV

See CMS TOP-11-028

ATLAS search

differences from CMS

- consider 2 lepton categories:
 - 3 tight-ID leptons
 - 2 tight-ID leptons + 1 "track" lepton
- enforce consistency of $t\overline{t} \rightarrow ZqWb$ decay by minimizing
- 2.1fb⁻¹

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{b}\ell_{b}}^{reco} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{reco} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{reco} - m_{W}\right)^{2}}{\sigma_{W}^{2}} + \frac{\left(m_{\ell_{a}\ell_{b}}^{reco} - m_{Z}\right)^{2}}{\sigma_{Z}^{2}}$$
(6)

See arxiv:1206.0257

ATLAS results

		3II)	2	ID+	TL
ZZ and WZ	9.5	\pm	4.4	1.0	\pm	0.5 0.6
$t\bar{t}W$ and $t\bar{t}Z$	0.51	\pm	0.14	0.25	\pm	0.05
$t\bar{t}, WW$	0.07	\pm	0.02			
Z+jets	1.7	\pm	0.7	7.6	+	9.9
Single top	0.01	\pm	0.01	1.0	工	2.2
2+3 fake leptons	0.0	\pm	$0.2 \\ 0.0$			
Expected background	11.8	\pm	4.4	8.9	\pm	2.3
Data	8			8		
Signal efficiency	(0.205	\pm	0.024)%	(0.045	\pm	0.007)%

Limits

- determined using modified frequentist approach at 95% CL
- consistent with CMS result

channel	observed	(-1σ)	expected	$(+1\sigma)$
3ID	0.81%	0.63%	0.95%	1.4%
2ID+TL	3.2%	2.15%	3.31%	4.9%
Combination	0.73%	0.61%	0.93%	1.4%

Flavor Changing Neutral Higgs

With the newly discovered Higgs(-like) boson with a mass of 125 GeV, detailed measurements of its decay properties are now underway.

Flavor-violation in an effective coupling

The Higgs couples to up-type quarks via a coupling of the form,

$$m_{ij}u_i\bar{u}_j + \lambda_{ij}^h h u_i\bar{u}_j + h.c. \tag{7}$$

The branching ratio with an effective Higgs interaction with flavor violating can be derived,

$$Br(t \to ch) \simeq \frac{|\xi_{tc}|^2 + |\xi_{ct}|^2}{8\sqrt{2}G_F^3 m_t^2 M^4 |V_{tb}^2} \frac{(1 - m_h^2/m_t^2)^2}{(1 - m_W^2/m_t^2)^2 (1 + 2m_W^2/m_t^2)}$$
(8)

$$\simeq 0.29(|\lambda_{tc}^h|^2 + |\lambda_{ct}^h|^2) \tag{9}$$

Estimates for Br($t \rightarrow Hq$) $\approx 10^{-2} - 10^{-3}$ in a 2HDM.

T. P. Cheng and M. Sher, "Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets," Phys. Rev. D 35, 3484 (1987).

Search strategies

Searches

- Investigation of the presence of $t \to Hq$ can be done with a similar strategy to $t \to Zq$ analysis
 - \blacksquare assume $t\bar{t}$ production
 - allow one t to decay normally $(t \rightarrow Wb)$
 - require the other decay as $t \rightarrow Hq$
- Many more possible decay channels available to Higgs; WW, ZZ, ττ, or bb̄ are all potentially viable search channels

Feasibility study with H o bar b final states

Acceptance cuts

- \blacksquare at least 3 b-jets ($p_T > 15 \text{ GeV}$)
- exactly one well isolated, prompt lepton ($p_T > 20 \text{ GeV}$)
- MET > 20 GeV
- enforce decays through cuts on $M_{b_1b_2\ell}, M_{b_3\ell\nu}$, etc.

Projected limits

- sensitivity to 3σ deviation at 8 TeV with $\sim 20 {\rm fb}^{-1}$
- potential to observe $+5\sigma$ deviation at 14 TeV with $\gtrsim 30 {\rm fb}^{-1}$
- See Kao, et. al.;(arxiv:1112.1707)

First results from CMS multi-lepton search

Based on a generalized multi-lepton search (arXiv:1112.2298), an initial limit can be placed on $Br(t \rightarrow hc)$.

strategy

4.89 fb⁻¹ of data collected at $\sqrt{s} = 7$ TeV is divided into several categories/bins based on,

- number of leptons ($N_{\ell} = 3, 4$)
- MET
- \blacksquare H_T $(=\sum p_T^{jets})$ or HT_S

The resulting yields can then be compared against a given signal model.

			Observed	Expected	Signal
4 Leptons					
MET HIGH	HT HIGH	No Z	0	0.018 ± 0.005	0.02
MET HIGH	HT HIGH	Z	0	0.22 ± 0.05	0.0
MET HIGH	HT LOW	No Z	1	0.2 ± 0.07	0.11
MET HIGH	HT LOW	Z	1	0.79 ± 0.21	0.04
MET LOW	HT HIGH	No Z	0	0.006 ± 0001	0.0
MET LOW	HT HIGH	Z	1	0.83 ± 0.33	0.04
MET LOW	HT LOW	No Z	1	2.6 ± 1.1	0.08
MET LOW	HT LOW	\mathbf{z}	33	37 ± 15	0.15
3 Leptons					
MET HIGH	HT HIGH	DY0	2	1.5 ± 0.5	0.48
MET HIGH	HT LOW	DY0	7	6.6 ± 2.3	2.1
MET LOW	HT HIGH	DY0	1	1.2 ± 0.7	0.26
MET LOW	HT LOW	DY0	14	11.7 ± 3.6	1.68
MET HIGH	HT HIGH	DY1 No Z	8	5 ± 1.3	1.54
MET HIGH	HT HIGH	DY1 Z	20	18.9 ± 6.4	0.41
MET HIGH	HT LOW	DY1 No Z	30	27 ± 7.6	5.8
MET HIGH	HT LOW	DY1 Z	141	134 ± 50	2.0
MET LOW	HT HIGH	$\mathrm{DY1}\ \mathrm{No}\ \mathrm{Z}$	11	4.5 ± 1.5	0.80
MET LOW	HT HIGH	DY1 Z	15	19.2 ± 4.8	0.72
MET LOW	HT LOW	$\mathrm{DY1}\ \mathrm{No}\ \mathrm{Z}$	123	144 ± 36	3.1
MET LOW	HT LOW	DY1 Z	657	764 ± 183	2.4

Combining all channels, an observed limit of $Br(t \to ch) < 2.7\%$ is calculated at 95% CL with an expected limit of $Br(t \to ch) < 1.7\%$.

Conclusions

Rare decays

- CMS has made most precise measurement of $|V_{tb}|$ to date.
- improvements on precision may be limited by systematics

FCNC

- ATLAS and CMS have put limits on several FCNC channels
- Projections for next LHC run suggest ×10 increse in sensitivity
- First limit put on $t \rightarrow qH$ decay; expect analysis of 8 TeV data later this year